Feuille d'exercices : Intégrale sur un intervalle quelconque

Exercice 1 (CCINP-Mines-Centrale) Étudier l'intégrabilité des fonctions suivantes :

1.
$$x \mapsto \frac{\ln x}{(1+x)(2+x)} \text{ sur }]0, \infty[.$$

4.
$$t \mapsto \frac{\text{ch}t - \cos t}{t^{\frac{5}{2}}} \text{ sur }]0, 1[.$$

2.
$$x \mapsto \frac{e^{-x}}{\sqrt{x-1}} \text{ sur }]1, \infty[$$
.

5.
$$t \mapsto \frac{\sin t}{\ln t} \sup [a, \infty[$$
.

3.
$$x \mapsto \sqrt{\tan(x)} \operatorname{sur} \left[0, \frac{\pi}{2}\right]$$
.

6.
$$t \mapsto \frac{\ln t - \ln(1 - e^{-t})}{t} e^{-\alpha t} \text{ sur }]0, +\infty[, \text{ où } \alpha \in \mathbb{R}.$$
7. $t \mapsto \cos(t^2 + at + b) \text{ sur } [0, \infty[\text{ pour } (a, b) \in \mathbb{R}^2.$

Exercice 2 (CCPINP) On définit
$$I_1 = \int_0^{+\infty} \frac{\mathrm{d}x}{x^{\alpha}(1+x^{\beta})}$$
 et $I_2 = \int_0^{+\infty} \frac{(1+t)^{\alpha}-t^{\alpha}}{t^{\beta}} \, \mathrm{d}t$.

- 1. Trouver les conditions sur (α, β) telles que I_1 soit définie.
- 2. Même question avec I_2 .
- 3. Tracer dans un repère (α en abcisses et β en ordonnées) les couples (α, β) qui rendent I_1 et I_2 définies.

Exercice 3 (Mines) Existence de l'intégrale
$$I = \int_0^{+\infty} \frac{\sin(x) \ln(x)}{x} dx$$
.

 $\textbf{Exercice 4} \hspace{0.2cm} \textit{(Mines-Centrale)} \hspace{0.2cm} \textbf{V\'erifier l'existence et calculer la valeur des int\'egrales suivantes:} \\$

1.
$$\int_0^{\frac{\pi}{2}} \ln(\sin x) \, dx$$
 et $\int_0^{\frac{\pi}{2}} \ln(\cos x) \, dx$.

4.
$$\int_0^1 \frac{(-1)^{\lfloor \frac{1}{x} \rfloor}}{x} dx$$
.

$$2. \int_1^\infty \frac{t \ln t}{(1+t^2)^2} \, \mathrm{d}t.$$

5.
$$\int_{1}^{+\infty} \left(\frac{1}{t} - \operatorname{Arcsin}\left(\frac{1}{t}\right) \right) dt$$
.

3.
$$\int_0^\infty \frac{\ln t}{1+t^2} \, \mathrm{d}t.$$

6.
$$\int_{1}^{+\infty} \frac{x - \lfloor x \rfloor}{x^2} \, \mathrm{d}x.$$

Exercice 5

- 1. Soit $n \in \mathbb{N}^*$. Vérifier que pour tout $t \ge 0$, $e^{-t^2} \le \frac{1}{\left(1 + \frac{t^2}{r}\right)^n}$.
- 2. Montrer que pour tout $t \in [0, \sqrt{n}] \left(1 \frac{t^2}{n}\right)^n \leqslant e^{-t^2}$.
- 3. Montrer que pour tout $n \in \mathbb{N}^*$, $\int_0^\infty \frac{\mathrm{d}t}{\left(1 + \frac{t^2}{n}\right)^n} = \sqrt{n}W_{2n-2}$ et $\int_0^{\sqrt{n}} \left(1 \frac{t^2}{n}\right)^n = \sqrt{n}W_{2n+1}$, avec (W_n) les intégrales de Wallis.
- 4. Après avoir démontré que $\lim_{n\to\infty} \sqrt{n}W_n = \sqrt{\frac{\pi}{2}}$, calculer $\int_0^\infty e^{-t^2} dt$.

Exercice 6 (ENTPE - EIVP) Montrer que pour
$$x \in \mathbb{R}_+^*$$
, $\int_0^{+\infty} \frac{e^{-t} \sin(xt)}{\sqrt{t}} dt > 0$.

Exercice 7 (Mines-Centrale)*

- 1. Existence et calcul, pour $n \in \mathbb{N}$ de $I_n = \int_0^{\frac{\pi}{2}} \frac{\sin((2n+1)t)}{\sin t} dt$ et $J_n = \int_0^{\frac{\pi}{2}} \frac{\sin^2(nt)}{\sin^2 t} dt$ (on pourra calculer la différence de deux termes consécutifs).
- 2. Pour tout $n \in \mathbb{N}$, on pose $u_n = \int_0^{\frac{\pi}{2}} \frac{\sin(2n+1)t}{t} dt$. Montrer que $\lim_{n \to \infty} u_n I_n = 0$.
- 3. En déduire $I = \int_0^{+\infty} \frac{\sin t}{t} dt$ et $J = \int_0^{+\infty} \frac{\sin^2 t}{t^2} dt$.

Exercice 8 (X-Mines) *

1. Soit $f: \mathbb{R}^+ \to \mathbb{C}$ de classe \mathcal{C}^1 avec f' intégrable. Montrer que $\sum f(n)$ converge si et seulement si $\int_0^{+\infty} f$ converge.

2. Nature de
$$\sum \frac{\sin \sqrt{n}}{n}$$
, $\sum \frac{\cos \sqrt{n}}{n}$, $\sum \frac{\cos(\ln n)}{n}$, $\sum \frac{\cos(\ln n)}{\ln n}$?

Exercice 9 (Mines)

1. Montrer l'existence de $I = \int_0^{+\infty} e^{it^2} dt$.

2. Montrer que
$$\int_{x}^{+\infty} e^{it^{2}} dt = ie^{ix^{2}} \frac{ie^{ix^{2}}}{2x} + O\left(\frac{1}{x^{2}}\right).$$

Exercice 10 (Mines) Soit $f: x \mapsto \int_x^{+\infty} \frac{\sin(t)}{t} dt$. Justifier que cette fonction est bien définie et donner son intervalle de définition. Y est-elle intégrable?

Exercice 11 (Mines) *

- 1. Soit $f:]0,1] \to \mathbb{R}^+$ décroissante et intégrable. Étudier la limite éventuelle de $x \mapsto x f(x)$ quand $x \to 0^+$.
- 2. Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ décroissante et intégrable. Étudier la limite éventuelle de $x \mapsto x f(x)$ quand $x \to +\infty$.

Exercice 12 (Mines) Soient $f:]0,1] \to \mathbb{C}$ de classe \mathcal{C}^1 , ℓ_1 et ℓ_2 deux réels tels que $f(x) \xrightarrow[x \to 0^+]{} \ell_1$ et $x f'(x) \xrightarrow[x \to 0^+]{} \ell_2$. Que vaut ℓ_2 ?

Exercice 13 (Mines) Soient $f: \mathbb{R}^+ \to \mathbb{R}$ continue et $s_0 \in \mathbb{R}$ tels que $\int_0^{+\infty} e^{-s_0 t} f(t) dt$ converge. Montrer que $\int_0^{+\infty} e^{-st} f(t) dt$ converge pour tout $s \ge s_0$.

Exercice 14 (SR) Soit $f: \mathbb{R}^+ \to \mathbb{R}^+$ continue tel que $\int_0^{+\infty} f(x) dx = 1$. On note $g: y \in \mathbb{R}^+ \to \int_y^{+\infty} f(x) dx$.

- 1. Montrer que $\int_0^{+\infty} x f(x) dx = \int_0^{+\infty} g(x) dx \in [0, +\infty].$
- 2. On suppose dans la suite que f est décroissante. Montrer qu'il existe un unique m > 0 tel que $\int_0^m f(x)dx = \frac{1}{2}$.
- 3. Montrer que $\int_{0}^{+\infty} x f(x) dx \ge m.$
- 4. Peut-on avoir égalité?

Exercice 15 (SR) On considère $0 < a \le b$.

- 1. Montrer les inégalités suivantes et caractériser les cas d'égalité : $1 \leqslant \frac{a+b}{2\sqrt{ab}} \leqslant \sqrt{\frac{a}{b}}$, puis $0 \leqslant \frac{\frac{a+b}{2} \sqrt{ab}}{\frac{a+b}{2} + \sqrt{ab}} \leqslant \left(\frac{b-a}{b+a}\right)^2$.
- 2. On considère $I(a,b) = \int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{\sqrt{(x^2 + a^2)(x^2 + b^2)}}$. Calculer I(a,a) et montrer que

$$I(a,b) = I\left(\frac{a+b}{2}, \sqrt{ab}\right).$$

3. On définit deux suites réelles $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$ par $a_0=a,b_0=b$ et, pour $n\in\mathbb{N},\ a_{n+1}=\frac{a_n+b_n}{2}$ et $b_{n+1}=\sqrt{a_nb_n}$. Étudier la convergence de $(a_n)_{n\geqslant 0}$ et $(b_n)_{n\geqslant 0}$. En déduire I(a,b).

Exercice 16 $(Ulm\text{-}Centrale\text{-}Mines)^*$ Soit $(a,b) \in \mathbb{R}_+^{*2}$. Soit $f \in \mathcal{C}^0(\mathbb{R}_+,\mathbb{R})$ telle que $\int_1^\infty \frac{f(x)}{x} \, \mathrm{d}x$ converge.

- 1. Justifier l'existence de $\int_{\epsilon}^{+\infty} \frac{f(at) f(bt)}{t} dt$, pour $\epsilon > 0$.
- 2. Calculer $l = \lim_{\epsilon \to 0^+} \int_{a\epsilon}^{b\epsilon} \frac{f(t)}{t} dt$.

- 3. Montrer que $\int_0^\infty \frac{f(ax) f(bx)}{x} dx$ converge et en calculer la valeur.
- 4. Montrer que $\int_0^\infty \frac{e^{-ax} e^{-bx}}{x} dx$ et $\int_0^\infty \frac{\cos(ax) \cos(bx)}{x} dx$ convergent et calculer leur valeur.
- 5. Soient $(a,b) \in (\mathbb{R}_+^*)^2$, $a \neq b$. Calculer $\int_0^\infty \frac{\sin(ax)\sin(bx)}{x} dx$.
- 6. Calcular $\int_0^{+\infty} \frac{\arctan(2x) \arctan(x)}{x} dx.$
- 7. Montrer que $\int_0^1 \frac{1-t}{\ln t} dt = -\ln 2.$

Exercice 17 (Mines) Soit $f \in C^0(\mathbb{R}, \mathbb{R})$, admettant une limite ℓ en $-\infty$ et telle que $\int_0^{+\infty} f$ converge. Montrer l'existence et calculer pour a < b l'intégrale $I(a,b) = \int_{-\infty}^{+\infty} (f(t+a) - f(t+b)) dt$.

Exercice 18 (Mines-Centrale) On note $E = \{ f \in \mathcal{C}^2(\mathbb{R}_+, \mathbb{R}), f^2 \text{ et } f''^2 \text{ sont } \mathbb{R}_+ - \text{intégrables} \}$. Soit $f \in E$.

- 1. * Montrer que ff'' est intégrable sur \mathbb{R}_+ .
- 2. * En déduire que f'^2 est intégrable sur \mathbb{R}_+ et $\lim_{x \to \infty} f(x)f'(x) = 0$.
- 3. * Montrer que $\lim_{x\to\infty} (f(x))^2 = 0$ et que $\lim_{x\to\infty} (f'(x))^2 = 0$.
- 4. * Dans le cas où f est de classe C^2 sur \mathbb{R} et telle que f^2 et f''^2 sont intégrables sur \mathbb{R} , montrer que f'^2 est intégrable sur \mathbb{R} et $\|f'\|_2^2 \leq \|f\|_2 \|f''\|_2$.
- 5. Pour tout $g \in E$, on définit $J(g) = \int_0^{+\infty} (g^2 g'^2 + g''^2)$. Montrer en le déterminant que J admet un minimum sur E. On pourra utiliser que $(g + g' + g'')^2 = (g^2 g'^2 + g''^2) + 2(g + g')(g' + g'')$.
- 6. Soit $f \in E$. Montrer que $||f'||_2^2 \le 2||f||_2||f''||_2$. On pourra utiliser $x \mapsto f(\mu x)$.

Exercice 19 (Mines)

- 1. On note L^2 le sous-espace des f de $C(\mathbb{R}^+,\mathbb{R})$ de carré intégrable sur \mathbb{R}^+ . Montrer que L^2 est un sous-espace vectoriel de $C(\mathbb{R}^+,\mathbb{R})$.
- 2. Soit $f \in C^2(\mathbb{R}^+, \mathbb{R})$ tel que f, f', f'' appartiennent à L^2 . Montrer que f' et f ont une limite réelle que l'on précisera en $+\infty$.
- 3. Avec les notations de (b), montrer que $\int_0^{+\infty} \left(f''^2 4f'^2 + 16f^2 \right) \ge 0$ et caractériser le cas d'égalité.

Exercice 20 (X) Soient $P \in \mathbb{C}[X]$ tel que $P(0) \neq 0$ et $r \in \mathbb{R}^{+*}$. Justifier la convergence de l'intégrale $\frac{1}{2\pi} \int_{-\pi}^{\pi} \ln(|P(re^{it})|) dt$, puis la calculer en fonction de P(0) et des racines de P de module strictement inférieur à r.

Exercice 21 (Mines-X) Soient P et Q deux polynômes de $\mathbb{C}[X]$, avec $\deg(P) \leq \deg(Q) - 2$. On suppose que Q n'a pas de racines réelles; on notera Z l'ensemble de ses racines.

- 1. Soit $z \in \mathbb{C} \setminus \mathbb{R}$. Soit $k \in \mathbb{N}$, $k \ge 2$. Montrer l'existence et donner la valeur de $\int_{-\infty}^{+\infty} \frac{\mathrm{d}t}{(t-z)^k}$.
- 2. Montrer l'existence de la limite quand r tend vers l'infini de $\int_{-r}^{r} \frac{\mathrm{d}t}{t-z}$, et en donner la valeur.
- 3. Montrer que $\int_{-\infty}^{+\infty} \frac{P(t)}{Q(t)} dt$ converge et que

$$\int_{-\infty}^{+\infty} \frac{P(t)}{Q(t)} dt = i\pi \sum_{z \in Z} \epsilon(z) \alpha(z),$$

avec $\epsilon(z)$ le signe de la partie imaginaire de z, et $\alpha(z)$ le coefficient devant $\frac{1}{X-z}$ dans la décomposition en éléments simples de $\frac{P}{Q}$.

4. Dans le cas où P et Q sont des polynômes des $\mathbb{R}[X]$, montrer que

$$\int_{-\infty}^{+\infty} \frac{P(t)}{Q(t)} dt = 2i\pi \sum_{z \in Z_{+}} \alpha(z),$$

où Z_+ est l'ensemble des racines de Q dans le demi-plan supérieur de $\mathbb{C}.$

5. En déduire la valeur de $\int_{-\infty}^{+\infty} \frac{\mathrm{d}x}{1+x^{2n}}$ pour $n \in \mathbb{N}^*$, de $\int_{-\infty}^{+\infty} \frac{t(t+1)}{(t^2+1)^2} dt$ et de $\int_{-\infty}^{+\infty} \frac{t^2}{1+t^4} dt$.

Exercice 22 (X) Soit $f \in C^1(\mathbb{R}_+, \mathbb{R})$ telle que $\int_0^{+\infty} f$ converge et telle que $x \mapsto \int_x^{x+1} f'^2$ est bornée. Montrer que $\lim_{x \to \infty} f(x) = 0$.

Exercice 23 (Centrale) Équivalent en 0 et en $+\infty$ de $\int_{x}^{+\infty} \frac{e^{-t}}{t} dt$.

Exercice 24 (Paris) Déterminer la limite de $\frac{1}{A} \int_1^A A^{1/x} dx$ lorsque A tend vers $+\infty$.

Exercice 25 (Lyon) Soit $f \in \mathcal{C}^0(\mathbb{R}^+, \mathbb{R})$ strictement décroissante telle que $f(x) \to 0$ quand $x \to +\infty$. Montrer que $\int_0^{+\infty} \frac{f(x) - f(x+1)}{f(x)} dx = +\infty.$

Exercice 26 (Centrale)*

- 1. Soit E l'espace vectoriel des fonctions $f: \mathbb{R}_+ \to \mathbb{R}$ intégrables, muni de la norme $\|.\|_1$. Soit a>0. Pour $f\in E$, on définit $\phi(f)=g$ par $g(x)=\mathrm{e}^{-ax}\int_0^x\mathrm{e}^{at}f(t)$ dt. Montrer que g est intégrable. Puis montrer que ϕ est un endormophisme continu de E $i.e: \exists M>0, \ \forall f\in E, \ \|\phi(f)\|_1 \leqslant M\|f\|_1$.
- 2. On se place maintenant sur l'espace F des fonctions de carré intégrable muni de la norme $\|.\|_2$. Étudier la même question dans ce cas.

Exercice 27 (Paris) Soit f une fonction continue et de carré intégrable de \mathbb{R}^+ dans \mathbb{R} . Déterminer la limite en $+\infty$ de $x \mapsto e^{-x} \int_0^x f(t) e^t dt$.

Exercice 28 (Paris) Soient $f \in C^0(\mathbb{R}^+, \mathbb{R})$ de carré intégrable et $g: x \mapsto f(x) - 2e^{-x} \int_0^x e^t f(t) \dot{t}$. Montrer que $\int_0^{+\infty} g^2 = \int_0^{+\infty} f^2$.

Exercice 29 (Centrale-X) *

1. Soit E l'espace vectoriel constitué des fonctions continues de \mathbb{R}^+ dans \mathbb{R} de carré intégrable que l'on munit de la norme définie par $\|f\|_2 = \left(\int_0^{+\infty} f^2\right)^{1/2}$.

Pour $f \in E$, on pose $\phi(f) = g$, où $g(x) = \frac{1}{x} \int_0^x f(t) dt$ si x > 0 et g(0) = f(0). Montrer que l'on définit ainsi un endomorphisme ϕ de E.

2. Déterminer $\sup_{f\in E\backslash\{0\}}\frac{\|\phi(f)\|}{\|f\|}\cdot$

Exercice 30 (Mines) Soit $f: [1, +\infty[\mapsto \mathbb{R} \text{ de classe } C^1 \text{ telle que } f'^2 \text{ est intégrable. Montrer que l'application } t \in [1, +\infty[\mapsto \frac{f(t)^2}{t^2} \text{ est intégrable.}]$

Exercice 31 (ENS) Sot p > 1.

- 1. Démontrer l'iéngalité de Hölder.
- 2. Soit f continue sur \mathbb{R}_+ , positive, telle que f^p soit intégrable sur \mathbb{R}_+ . On pose $F: x > 0 \mapsto \frac{1}{x} \int_0^x f(t) \, dt$. Montrer que F^p est intégrable sur \mathbb{R}_+^* et que $\int_0^{+\infty} F^p \leqslant \left(\frac{p}{p-1}\right)^p \int_0^{+\infty} f^p$.

4